Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
نویسنده
چکیده
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
منابع مشابه
Bio-Inspired Spiking Convolutional Network using Layer-wise Sparse Coding and STDP Learning
Hierarchical feature discovery using non-spiking convolutional neural networks (CNNs) has attracted much recent interest in machine learning and computer vision. However, it is still not well understood how to create spiking deep networks with multi-layer, unsupervised learning. One advantage of spiking CNNs is their bio-realism. Another advantage is that they represent information using sparse...
متن کاملReinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic Plasticity
The persistent modification of synaptic efficacy as a function of the relative timing of pre- and postsynaptic spikes is a phenomenon known as spike-timing-dependent plasticity (STDP). Here we show that the modulation of STDP by a global reward signal leads to reinforcement learning. We first derive analytically learning rules involving reward-modulated spike-timing-dependent synaptic and intri...
متن کاملha l - 00 11 54 20 , v er si on 1 - 2 1 N ov 2 00 6 Learning and discrimination through STDP in a top - down modulated associative memory ∗
This article underlines the learning and discrimination capabilities of a model of associative memory based on artificial networks of spiking neurons. Inspired from neuropsychology and neurobiology, the model implements top-down modulations, as in neocortical layer V pyramidal neurons, with a learning rule based on synaptic plasticity (STDP), for performing a multimodal association learning tas...
متن کاملLearning and discrimination through STDP in a top-down modulated associative memory
This article underlines the learning and discrimination capabilities of a model of associative memory based on artificial networks of spiking neurons. Inspired from neuropsychology and neurobiology, the model implements top-down modulations, as in neocortical layer V pyramidal neurons, with a learning rule based on synaptic plasticity (STDP), for performing a multimodal association learning tas...
متن کاملA supervised learning approach based on STDP and polychronization in spiking neuron networks
We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algorithm, based on a margin criterion, that has effect on the synaptic delays linking the network to the output neurons, with classification as ...
متن کامل